---------------

Libro PDF Mecánica vectorial para Ingenieros Dinámica – 9a Edición McGraw-Hill

Mecánica vectorial para Ingenieros Dinámica - 9a Edición McGraw-Hill

Descargar  Libro PDF Mecánica vectorial para Ingenieros Dinámica – 9a Edición McGraw-Hill


Los autores de esta obra con frecuencia son cuestionados acerca de cómo
fue que, estando uno en Lehigh y otro en la University of Connecticut,
empezaron a escribir sus libros juntos.
La respuesta a esta pregunta es sencilla. Russ Johnston inició su carrera
académica en el departamento de ingeniería civil y mecánica de
Lehigh University y allí conoció a Ferd Beer, quien había comenzado a
trabajar en ese departamento dos años antes y estaba a cargo de los cursos
de mecánica.
Ferd se sintió muy complacido al descubrir que el joven contratado
para impartir cursos de ingeniería estructural en posgrado no sólo
estaba dispuesto, sino también ansioso por ayudarlo a reorganizar los
cursos de mecánica. Ambos creían que dichos cursos deberían enseñarse
a partir de unos cuantos principios básicos, y que los distintos conceptos
involucrados serían mejor comprendidos y recordados por los
estudiantes si les eran presentados en forma gráfica. Juntos escribieron
apuntes para las clases de estática y dinámica, a los cuales posteriormente
les agregaron problemas que supusieron interesantes para los
futuros ingenieros, y poco después produjeron el manuscrito de la primera
edición de Mecánica para ingenieros, el cual se publicó en junio
de 1956.
Al publicarse la segunda edición de Mecánica para ingenieros y la
primera de Mecánica vectorial para ingenieros, Russ Johnston estaba
en el Worcester Polytechnic Institute, y en las ediciones subsecuentes en
la University of Connecticut. Mientras tanto, Ferd y Russ habían asumido
funciones administrativas en sus respectivos departamentos y
ambos se dedicaban a la investigación, la consultoría, y a asesorar estudiantes
de posgrado —Ferd en el área de procesos estocásticos y vibraciones
aleatorias, y Russ en el área de estabilidad elástica y en diseño y
análisis estructurales—. Sin embargo, su interés por mejorar la enseñanza
de los cursos básicos de mecánica no había disminuido, y continuaron
impartiéndolos mientras revisaban sus libros y comenzaban a
preparar el manuscrito de la primera edición de Mecánica de materiales.
La colaboración entre estos dos autores ha abarcado muchos años y
muchas revisiones exitosas de todos sus libros, y las contribuciones de Ferd
y Russ a la educación en ingeniería los han hecho acreedores de numerosas
distinciones y reconocimientos. Recibieron el Western Electric Fund
Award por parte de sus respectivas secciones regionales de la American Society
for Engineering Education por su excelencia en la instrucción de estudiantes
de ingeniería y, además, el Distinguished Educator Award de la
vii
división de mecánica de esa misma asociación. A partir de 2001, el reconocimiento
denominado New Mechanics Educator Award de la división de
mecánica ha sido nombrado en honor de Beer y Johnston.
Ferdinand P. Beer. Nacido en Francia y educado en Francia y Suiza,
Ferd obtuvo una maestría en la Sorbona y un doctorado en ciencias
en el área de mecánica teórica en la Universidad de Ginebra.
Emigró a Estados Unidos después de servir en el ejército francés durante
la primera parte de la Segunda Guerra Mundial e impartió clases
por cuatro años en el Williams College en el programa conjunto
de ingeniería y artes Williams-MIT. Después de su servicio en esta
institución, Ferd ingresó al profesorado de Lehigh University, donde
enseñó durante treinta y siete años. Ocupó varios puestos, incluyendo
el de profesor distinguido de la universidad y director del departamento
de Mecánica e Ingeniería Mecánica. En 1995 recibió el grado
de Doctor honoris causa en Ingeniería por la Lehigh University.
E. Russell Johnston, Jr. Nacido en Filadelfia, Russ posee un título de
ingeniero civil de la Universidad de Delaware y un doctorado en ciencias
en el área de ingeniería estructural del Instituto Tecnológico de
Massachussets (MIT). Impartió clases en Lehigh University y en el
Worcester Polytechnic Institute antes de ingresar al profesorado de la
Universidad de Connecticut, donde ocupó el puesto de director del departamento
de Ingeniería Civil y enseñó durante veintiséis años. En
1991 recibió el Outstanding Civil Engineer Award, sección Connecticut,
que otorga la American Society of Civil Engineers.
Phillip J. Cornwell. Phil posee un título en Ingeniería Mecánica de la
Texas Tech University, y grados de maestría y doctorado en Ingeniería
Mecánica y aeroespacial por la Universidad de Princeton. En la actualidad
es profesor de Ingeniería Mecánica en el Instituto Rose-Hulman
de Tecnología, donde ha impartido clases desde 1989. Sus intereses actuales
incluyen dinámica estructural, monitoreo de la salud estructural,
y educación en ingeniería a nivel de licenciatura. En los veranos, Phil
trabaja en el Laboratorio Nacional de Los Álamos, donde es responsable
de la escuela de verano de dinámica, y realiza investigación en el
área de monitoreo de la salud estructural. Recibió un premio en educación
SAE Ralph R. Teetor en 1992, el premio escolar por impartición
de clases en Rose-Hulman en 2000, y el premio por impartición de clases
del profesorado de Rose-Hulman en 2001.
viii Acerca de los autores
Contenido
Prefacio xiv
Agradecimientos xx
Lista de símbolos xxi
11
CINEMÁTICA DE PARTÍCULAS
601
11.1 Introducción a la dinámica 602
Movimiento rectilíneo de partículas 603
11.2 Posición, velocidad y aceleración 603
11.3 Determinación del movimiento de una partícula 607
11.4 Movimiento rectilíneo uniforme 616
11.5 Movimiento rectilíneo uniformemente acelerado 617
11.6 Movimiento de varias partículas 618
*11.7 Solución gráfica de problemas de movimiento rectilíneo 630
*11.8 Otros métodos gráficos 631
Movimiento curvilíneo de partículas 641
11.9 Vector de posición, velocidad y aceleración 641
11.10 Derivadas de funciones vectoriales 643
11.11 Componentes rectangulares de la velocidad
y la aceleración 645
11.12 Movimiento relativo a un sistema de referencia
en traslación 646
11.13 Componentes tangencial y normal 665
11.14 Componentes radial y transversal 668
Repaso y resumen del capítulo 11 682
Problemas de repaso 686
Problemas de computadora 688
12
CINÉTICA DE PARTÍCULAS: SEGUNDA LEY DE NEWTON
691
12.1 Introducción 692
12.2 Segunda ley de movimiento de Newton 693
12.3 Cantidad de movimiento lineal de una partícula.
Razón de cambio de la cantidad de movimiento lineal 694
ix
12.4 Sistemas de unidades 695
12.5 Ecuaciones de movimiento 697
12.6 Equilibrio dinámico 699
12.7 Cantidad de movimiento angular de una partícula.
Razón de cambio de la cantidad de movimiento angular 721
12.8 Ecuaciones de movimiento en términos de las
componentes radial y transversal 723
12.9 Movimiento bajo una fuerza central. Conservación de la
cantidad de movimiento angular 724
12.10 Ley de gravitación de Newton 725
*12.11 Trayectoria de una partícula bajo la acción de una
fuerza central 736
*12.12 Aplicación en mecánica celeste 737
*12.13 Leyes de Kepler del movimiento planetario 740
Repaso y resumen del capítulo 12 749
Problemas de repaso 753
Problemas de computadora 756
13
CINÉTICA DE PARTÍCULAS:
MÉTODOS DE LA ENERGÍA Y LA CANTIDAD
DE MOVIMIENTO
759
13.1 Introducción 760
13.2 Trabajo de una fuerza 760
13.3 Energía cinética de una partícula. Principio del trabajo y la
energía 764
13.4 Aplicaciones del principio del trabajo y la energía 766
13.5 Potencia y eficiencia 767
13.6 Energía potencial 786
*13.7 Fuerzas conservativas 788
13.8 Conservación de la energía 789
13.9 Movimiento bajo una fuerza central conservativa.
Aplicación a la mecánica celeste 791
13.10 Principio del impulso y la cantidad
de movimiento 810
13.11 Movimiento impulsivo 813
13.12 Impacto 825
13.13 Impacto central directo 825
13.14 Impacto central oblicuo 828
13.15 Problemas en los que interviene la energía y la cantidad
de movimiento 831
Repaso y resumen del capítulo 13 847
Problemas de repaso 853
Problemas de computadora 856
14
SISTEMAS DE PARTÍCULAS
859
14.1 Introducción 860
14.2 Aplicación de las leyes de Newton al movimiento de un sistema
de partículas. Fuerzas efectivas 860
14.3 Cantidad de movimiento lineal y angular de un sistema de
partículas 863
x Contenido
14.4 Movimiento del centro de masa de un sistema
de partículas 864
14.5 Cantidad de movimiento angular de un sistema de partículas
alrededor de su centro de masa 866
14.6 Conservación de la cantidad de movimiento para sistemas
de partículas 868
14.7 Energía cinética de un sistema de partículas 877
14.8 Principio del trabajo y la energía. Conservación de la energía
para un sistema de partículas 879
14.9 Principio del impulso y la cantidad de movimiento de un sistema
de partículas 879
*14.10 Sistemas variables de partículas 890
*14.11 Corriente estacionaria de partículas 890
*14.12 Sistemas que ganan o pierden masa 893
Repaso y resumen del capítulo 14 908
Problemas de repaso 912
Problemas de computadora 916
15
CINEMÁTICA DE CUERPOS RÍGIDOS
919
15.1 Introducción 920
15.2 Traslación 922
15.3 Rotación alrededor de un eje fijo 923
15.4 Ecuaciones que definen la rotación de un cuerpo rígido
alrededor de un eje fijo 926
15.5 Movimiento plano general 936
15.6 Velocidad absoluta y velocidad relativa en el movimiento
plano 938
15.7 Centro instantáneo de rotación en el movimiento plano 950
15.8 Aceleraciones absoluta y relativa en el movimiento plano 961
*15.9 Análisis del movimiento plano en términos de un
parámetro 963
15.10 Razón de cambio de un vector con respecto a un sistema de
referencia en rotación 975
15.11 Movimiento plano de una partícula relativa a un sistema
de referencia en rotación. Aceleración de Coriolis 977
*15.12 Movimiento alrededor de un punto fijo 988
*15.13 Movimiento general 991
*15.14 Movimiento tridimensional de una partícula con respecto
a un sistema de referencia en rotación. Aceleración
de Coriolis 1002
*15.15 Sistema de referencia en movimiento general 1003
Repaso y resumen del capítulo 15 1015
Problemas de repaso 1022
Problemas de computadora 1025
16
MOVIMIENTO PLANO DE CUERPOS RÍGIDOS:
FUERZAS Y ACELERACIONES
1029
16.1 Introducción 1030
16.2 Ecuaciones de movimiento de un cuerpo rígido 1031
Contenido xi
16.3 Cantidad de movimiento angular de un cuerpo rígido en
movimiento plano 1032
16.4 Movimiento plano de un cuerpo rígido. Principio de
d’Alembert 1033
*16.5 Observación acerca de los axiomas de la mecánica de cuerpos
rígidos 1034
16.6 Solución de problemas que implican el movimiento de un cuerpo
rígido 1035
16.7 Sistemas de cuerpos rígidos 1036
16.8 Movimiento plano restringido o vinculado 1055
Repaso y resumen del capítulo 16 1077
Problemas de repaso 1079
Problemas de computadora 1082
17
MOVIMIENTO PLANO DE CUERPOS RÍGIDOS:
MÉTODOS DE LA ENERGÍA Y LA CANTIDAD DE MOVIMIENTO
1085
17.1 Introducción 1086
17.2 Principio del trabajo y la energía para un cuerpo rígido 1086
17.3 Trabajo de las fuerzas que actúan sobre un cuerpo
rígido 1087
17.4 Energía cinética de un cuerpo rígido en movimiento
plano 1088
17.5 Sistemas de cuerpos rígidos 1089
17.6 Conservación de la energía 1090
17.7 Potencia 1091
17.8 Principio del impulso y la cantidad de movimiento para el
movimiento plano de un cuerpo rígido 1107
17.9 Sistemas de cuerpos rígidos 1110
17.10 Conservación de la cantidad de movimiento angular 1110
17.11 Movimiento impulsivo 1124
17.12 Impacto excéntrico 1124
Repaso y resumen del capítulo 17

Web del Autor

Clic Aqui Pagina Oficial

Si no sabes descargar mira este video tutorial

[sociallocker]
[popfly]

Descargar 

Leer en online
[/popfly] [/sociallocker]

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

error: Content is protected !!
---------